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ABSTRACT

Scene parsing is an important task in computer vision and
many issues still need to be solved. One problem is about
the non-unified framework for predicting things and stuff and
the other one refers to the inadequate description of contex-
tual information. In this paper, we address these issues by
proposing a Hierarchical Deep Probability Analysis(HDPA)
method which particularly exploits the power of probabilis-
tic graphical model and deep convolutional neural network
on pixel-level scene parsing. To be specific, an input image
is initially segmented and represented through a CNN frame-
work under Gaussian pyramid. Then the graphical models are
built under each scale and the labels are ultimately predicted
by structural analysis. Three contributions are claimed: uni-
fied framework for scene labeling, hierarchical probabilistic
graphical modeling and adequate contextual information con-
sideration. Experiments on three benchmarks show that the
proposed method outperforms the state-of-the-arts in scene
parsing.

Index Terms— Computer vision, scene parsing, semantic
segmentation, probabilistic graphical model, CRF

1. INTRODUCTION

Scene parsing has been widely investigated for its important
role in computer vision. Many challenging tasks such as im-
age or video captioning, autonomous navigation, and traffic
scene analysis[1, 2, 3] have proven to benefit from scene pars-
ing. In some literature, scene parsing is known as semantic
segmentation, semantic annotation, image parsing, and Ful-
1 Scene Labeling (FSL). Concretely, scene parsing tends to
label every pixel in the image with the category of things or
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(b)

Fig. 1. Highlights of the proposed method. Given a fixed-size
segmented region under multi-scale images, different level-
s of contextual information can be provided. (b) shows the
strategy of considering different range of contextual informa-
tion.

stuff it belongs to. After scene parsing, every element of ob-
jects is segmented and tagged.

Two issues of primary importance in the context of scene
parsing should be clearly described. One issue is about two
items: thing and stuff. Thing is defined as an object with a spe-
cific size and shape[1], such as the car in Fig. 1. Instead, stuff
tends to be a homogeneous or repetitive pattern, with no spe-
cific spatial extent/shape[1], such as the sky or the road in Fig.
1. Like traditional computer vision systems, a perfect scene
parsing model should be unified which can cooperatively seg-
ment all the things and stuff in the image. The other issue is
about contextual information, which provides important cues
for scene parsing. Context refers to the semantic correlation
between one object and its neighboring objects. For example,
a car is more likely to appear on road and it is not likely to
be surrounded by sky in Fig. 1(a). In some cases, contextu-
al information is the most significant cue when the object is
ambiguously represented in feature space.

Previous methods have made significant progress address-
ing the mentioned issues over the past few years. Probabilistic
Graphical Models(PGM) have been widely investigated[4, 5]
to enhance the scene parsing tasks for its ability of multi-
variate joint probability distribution representation[6]. Par-
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Fig. 2. HDPA pipeline. The input image is initially segmented under Gaussian pyramid with specific block numbers and each
block is represented through a convolutional neural network. Subsequently, a probabilistic graphical model is utilized under
each pyramid scale and the final pixel labels are obtained by structural analysis.

ticularly, Markov Random Fields(MRFs) and its variant Con-
ditional Random Fields(CRFs) have witnessed great success
in this field[7, 8]. Moreover, they have became one of the
most successful models in computer vision. For scene pars-
ing, CRFs formulate the label assignment task as a condition-
al probability inference problem, with the ability of combin-
ing local appearance information and smoothness priors[9].
Recently, Deep Neural Network(DNN) approaches such as
Convolutional Neural Networks(CNNs) have been success-
fully equipped in high level tasks such as object detection and
object recognition[10, 11]. This phenomenon motivates re-
searchers to explore CNN for scene parsing. The superiori-
ty of CNNs is fully data-driven, therefore being more accu-
rate in representing training samples and able to find feature
patterns. While hand-crafted feature is domain inspired and
tends to be more suitable for a specific task. Furthermore,
a number of recent DNN based frameworks including Ful-
ly Convolutional Networks(FCN)[12] and Recurrent Neural
Network(RNN)[13] have witnessed significant performance
boost by end-to-end strategy and memory characteristic.

Although significant progress has been made when adapt-
ing CRFs and CNNs for scene parsing, some challenges still
exist. Firstly, CRFs by themselves are not able to capture
large input contexts which are essential for detecting larger
object classes such as road[14, 15]. Meanwhile, traditional
pixel-level scene parsing models, especially CRF based meth-
ods, are time-consuming. Secondly, CNNs are more likely
to be feature extractor and lack smoothness constraints that
encourage label agreement between similar pixels[16]. S-
tarting from these drawbacks, this paper proposes a scene
parsing method named Hierarchical Deep Probability Anal-
ysis(HDPA). Our formulation jointly considers the strengths
of Deep Neural Network and probabilistic graphical model-
s in a unified framework. More specifically, the input image
is initially segmented under Gaussian pyramid with specific
block numbers and each block is represented through a convo-
lutional neural network. Subsequently, a probabilistic graph-

ical model is utilized under each pyramid scale and the final
pixel labels are obtained by probability analysis. The main
contributions of this research are listed as follows.

(1) Unified framework for scene parsing. Tradition-
al methods tend to separately label things and stuff, such
as labeling things through detection method and labeling
stuff through segmentation method, which would weaken the
neighboring constraints. In this work, a unified framework
is proposed which simultaneously considers the neighboring
things and stuff.

(2) Hierarchical probabilistic graphical modeling. The
proposed probabilistic graphical model is defined over a set
of patches. Compared to the previous works, this strategy
jointly takes different levels of the scene into consideration
and most scene-level relationships can be captured.

(3) Adequate contextual information consideration. One
of the main challenges for scene parsing is how to take wide
range of contextual information into consideration. As is
known, probabilistic graphical models, such as CRFs, are not
able to capture large input contexts which are essential for
labeling larger object classes such as road. To solve this prob-
lem, the proposed probabilistic graphical models are built on
patches under Gaussian pyramid. Smaller number of squared
patches are defined in smaller scale. This strategy can effi-
ciently take wide contexts into consideration.

The rest of this paper is organized as follows. The pro-
posed HDPA model is elaborated in Section 2. Experimental
results are presented in Section 3 and Section 4 concludes the

paper.

2. HIERARCHICAL DEEP PROBABILITY
ANALYSIS FOR SCENE PARSING

In this section, scene parsing problem is elaborated formu-
lated. We present the detailed procedure of our Hierarchical
Deep Probability Analysis (HDPA) method and the pipeline
is depicted in Fig. 2.



2.1. Multi-Scale Modeling

Given an input image I, a multiscale pyramid of images
X;,Vs € § = {1,...,S} is constructed. The multiscale
pyramid is based on Gaussian pyramid for its linear property
which would not pollute the original image, and is typically
pre-processed, so that local neighborhoods have zero mean
and unit standard deviation. As is shown in Fig. 2, each scale
of the Gaussian pyramid is segmented into patches. For the
scale image with larger Gaussian kernel size, smaller num-
ber of patches are segmented. The reason can be explained
as follows: for a certain model, it’s a tradeoff between the a-
bility of recognizing detailed information and owning a wide
perceptual field. Based on this, detailed texture information
is eliminated for the image processed by large Gaussian k-
ernel and wide perceptual field is naturally captured for the
proposed model.

CNN model, which is widely used for its data-driven abil-
ity, is utilized to represent the high-level semantic information
of each patch. Given a classical convolutional network with
parameters 6, the multiscale network is obtained by instan-
tiating one network per scale s, and sharing all parameters
across scales: 65 = 0p,Vs € S. Considering the complexity
of the CNN models, images under different scales share the
same CNN models with the same parameters. In this paper,
a pre-trained VGG model [17] is utilized to initialize the C-
NN model and the fine-tune strategy is also considered. For
the ith patch z; of X, where ¢ € {1,..., N} indicates the
number of patches in current scale, the CNN feature can be
written as f;.

For simplicity, the scale parameter s is eliminated and X
represents a segmented patch of X in the following part.

2.2. Conditional Random Fields

A brief overview of Conditional Random Fields(CRFs) for
pixel-wise labeling and the notations used in this work are
introduced. CRF is a discriminative undirected probabilistic
graphical model, a sort of Markov Random Field. The chief
advantage of CRF lies in the fact that it models the condi-
tional distribution P(Y | X)) rather than the joint distribution
P(Y, X). The major difference between CRF with some oth-
er existing methods is that it is a global model that considers
all residues as a whole rather than focuses merely on a local
window around the tag to be labeled. In the inference, the
states of all tags are predicted simultaneously in a way that
maximizes the overall likelihood.

Let G = (V,€) be the associated undirected graph
of an CRF. Nodes V represent random variables X =
{z1,...,2ny},Y = {y1,...,y~n} and edges & represents
conditional dependencies. Typically, random variable y; rep-
resents the label assigned to pixel ¢, x; represents the feature
of pixel 7 and edges represent the relationship between neigh-
boring pixels. Accordingly, the random variables Y ranges

over possible pixel label space £ = {1,...,1} and X ranges
over input image size V.

According to the Markov property, the conditional proba-
bility of Y, given observations X, can be expressed as

PO1X) = g [Tow 0 [Tow ).

where the first product in Eq.1 is over all individual variables,
while the second is over the set of cligues c in the graph. From
the aspect of Gibbs distribution, Eq.1 can be rewritten as

P(Y|X) = ﬁe‘m'x% )

where Z(Y) = Y 5 e PXYIX) is a normalization term
called partition function and E(Y|X) is the Gibbs energy
Sfunction of labeling Y € LY. For notational convenience,
the conditioning X is omitted in the rest of this paper and the
Gibbs energy of fully connected pairwise CRF model can be
written as

E(Y) = Zﬂ’u(@/z) + pr(ymyj), 3)

i<j

where 4,j € {1,...,N}. The unary energy components
¥, (y;) measure the distribution over the label assignmen-
t y; given image features. The pairwise energy components
¥p(yi, y;) measure the cost of assigning labels y;, y; to pixel-
s 4,7 simultaneously. In this work, unary energies are ob-
tained from a pre-trained CNN, which roughly predicting
labels without considering the smoothness of the label as-
signments. The pairwise energies provide an image data-
dependent smoothing term that encourages assigning similar
label to pixels with similar position. As was done in [18], we
model pairwise function as

M
Up(Wirys) = plyi,y;) > W ™EM(fi F), @)

m=1

where pu(yi, y;) = 1if y; # y; and pu(yi, y;) = 0if y; = y;.
Each k(") is a Gaussian kernel depends on pixel feature f
and w(™) is weighted parameters. The CRF energy defined in
Eq. 3 is minimized using truncated EM in [18].

2.3. Structural Analysis

Based on the CRF models described above, the conditional
distributions P(Y;|X;),Vs € S = {1,...,S}) are obtained
and the predicted labels of current scale s can be written as

Y, =arg max

PY;XS7 ].,...7 s 5
Y.e{1,..., [}V (Y[ X),s € { S, 5

where N is the number of patches in current scale.



How to take full advantage of the inferred results is a chal-
lenging problem. Traditional methods tend to utilize voting
strategy although significant contextual information is elim-
inated. For example, the CRF model trained by the patches
in small scale tends to label the testing patch as large things
or stuff, such as road and sky. Moreover, the inferred labels
between different scales also show strong correlations which
can be regarded as the contextual information between scales.
For example, given a pixel which is labeled as road in smal-
1 scale model and labeled as car in large scale model, then
we can strongly believe that the pixel belongs to car region.
On the contrary, if a pixel is labeled as road region in smal-
1 scale model and labeled as pedestrian class in large scale
model, then we will be confused about labeling the pixel for
the pedestrian is impossible to be located in sky region. One
solution to this problem is to calculate the joint condition-
al probabilityP(Y|X) = P(Y| X1, X3, ..., Xg). However,
the equation can not be easily calculated for the absence of
essential information.

In order to solve this problem, a sparse based model is
built to calculate the final scene parsing results considering
the prediction results of neighboring pixels. For each scale,
the predicted labels Y are firstly resized to the original im-
age size with the nearest interpolation method. Subsequently,
for a certain pixel z;, its labels and neighboring pixels in-
ferred from the total S scales can be written as a; € £F*!
and A = [a1, as, ...,ay]T, where k is the total number of its
neighbours. The mathematical equation can be written as

w* = argmin [|Aw — Y ||3, s.t.||w|; <e, (6)

where ¢ indicates the residual error and this problem can be
solved by Lasso[19]. The final labels can be obtained by

y! = arg min ||a;w* — y;||2,7 € [1, ..., N]. @)
Y, €L

3. EXPERIMENTS

We evaluate our approach over three published datasets. Al-
1 results are obtained using the same parameters across the
different algorithms and datasets.

3.1. Datasets

A number of scene parsing datasets are available and three
datasets [20, 21, 22] are chosen for their challenging proper-
ties.

e CamVid is a road scene understanding dataset with 468
training images and 233 testing images of day and dusk
scenes [20]. The challenge is to segment 11 classes
such as road, buildings, cars, pedestrians, signs, side-
walk, etc.

e Stanford-Background dataset [21] contains 715 im-
ages of outdoor scenes with two separate label sets: se-
mantic and geometric. We conduct our experiments for
predicting the semantic category only. The semantic
classes include seven background classes and a generic
foreground class.

o KITTTI dataset [22] is a large publicly available road
scene dataset and some images were extracted and
manually annotated for scene parsing. For comparison,
the labeled images in [23] are utilized as experimen-
tal data which contains 142 images. Moreover, 11 se-
mantic classes, such as buildings and road, are severely
imbalanced distributed.

3.2. Performance Analysis

In order to evaluate the performance of the HDPA approach
for scene parsing, two evaluation criterions are considered,
one is pixel accuracy which indicates the percentage of pix-
els correctly labeled. The other one is per class accuracy
which defined as the average of semantic category accuracies.
Experimental results are evaluated by qualitative and quanti-
tative measures. Typical scene parsing results of the three
datasets are presented in Fig. 3. From the Table 1, it is obvi-
ous that the proposed method is robust in defining the scene
labels.

For a more objective comparison, a more detailed analysis
on the three datasets is presented as follows.

CamVid: The frames are sampled from two daytime and
one dusk sequences and the first block of Table 1 shows the
performance of the proposed method compare with state-of-
the-arts. We can observe the positive impact of the proposed
HDPA model in this work. For example, the appearance mod-
el [24] and the local labeling method [25] perform worse in
the dust sequences for their low-level feature representation.
On the contrary, our work exploits the power of CNN mod-
el and Gaussian pyramid strategy, adequate contextual infor-
mation is utilized to improve the performance of HDPA. In
addition, the CRF method [26] performs well when consider-
ing the class accuracy criteria. Our method takes advantage
of the CRF model and takes different levels of the scene into
consideration which leads to higher pixel accuracy.

Stanford-Background: Experiments on this dataset are
conducted over 5-fold validation. Concretely, 572 images are
served as training examples and the other 143 images are uti-
lized to test the performance of the proposed HDPA method
each time. The second block of Table 1 shows the superior-
ity of our method. For example, Recursive Neural Network
model [27] and Recurrent Neural Network model [13] can ef-
ficiently take the contextual constraints into account on the
structure of the models. On this foundation, our work ex-
plores the power of contexts from two directions. The first
one is focusing on the local contexts and the probabilistic
graphical model is built. The other one exploits the strengths



Table 1. Quantitative scene parsing results, including pixel
accuracy and class accuracy(%). The bold numbers represent
the best scores.

[ Dataset | Approach | Pixel Acc. | Class Acc. |

SEFM+Appearance [24] 69.1 53.0
Boosting [26] 76.4 59.8
Structured Random Forests [28] 72.5 514

CamVid | Local Label Descriptors [29] 73.6 36.3
Boosting+pairwise CRF [26] 79.8 59.9
Local Labeling+MRF [25] 77.6 43.8
HDPA (ours) 81.1 49.9
Stacked Labeling [30] 76.9 66.2
Recursive Neural Networks [27] 78.1 N/A

Stanford Recurrent Neural Networks [13] 80.2 69.9
Hierarchical Features [5] 81.4 76.0
WAKNN+MREF [31] 74.1 62.2
HDPA (ours) 81.7 70.6
Temporal Semantic Segmenta- | 51.2 61.6
tion [23]

KITTI Semantic Segmentation Retrieva | 47.1 58.0
[23]
HDPA (ours) 79.8 45.84

of pyramid model by taking hierarchical inferred labels in-
to solving a sparse problem. Experiments on pixel accuracy
verified the contributions of this work.

KITTI: This sequence is captured with wide angle and was
sampled from videos under a certain frequency. Moreover,
the semantic label is imbalanced distributed and the long-tail
phenomenon is obvious. Addressing these difficulties, tem-
poral constraint is considered in [23] and high class accuracy
verified the effectiveness of the temporal information. On the
contrary, temporal context information does not take into ac-
count in our method temporarily and competitive results on
the pixel criterion also show the superiority of the proposed
method.

Although significant results have been reached when take
the pixel accuracy as the evaluation criterion, the proposed
HDPA method has shown its weakness on the aspect of class
accuracy. On one hand, a unified framework which simultane-
ously considers the neighboring things and stuff can strength-
en the object correlations. Furthermore, hierarchical CRF
models based on Gaussian pyramid can take different level
of object parsing into considerations which leads to adequate
contextual for scene parsing. On the other hand, the proposed
method is based on sampling certain number of patches from
Gaussian pyramid and this strategy would ignore the small-
sized semantic class. For example, for the KITTI dataset,
the number of pixels defines as pole label[23] is very smal-
1 and nearly zero number of pixels were correctly though our
method. This phenomenon can explain the low class accuracy
of the proposed HDPA method. Generally, high pixel accura-
cy can effectively reduce the negative effect of the low class
accuracy on some aspects.

Fig. 3. Qualitative scene parsing results. CamVid results are
shown in (a) and (b) is Stanford-Background results. KITTI
results are demonstrated in (c). For each datset results, the
first column indicates the input images, the second column
shows the scene parsing result based on the proposed HDPA
model and the last column provides the groundtruth.

4. CONCLUSION

In this paper, we present a hierarchical deep probability analy-
sis model for pixel-level scene parsing. Specifically, the input
image is firstly segmented under Gaussian pyramid with cer-
tain block numbers and each block is represented through a
convolutional neural network. Subsequently, a probabilistic
graphical model is utilized under each pyramid scale and the
final pixel labels are obtained by probability analysis. The
proposed method particularly exploits the power of proba-
bilistic graphical model and deep convolutional neural net-
work, and three contributions are claimed: unified framework
for scene parsing, hierarchical probabilistic graphical model-
ing and adequate contextual information consideration. The
superiority of the proposed method is verified on three bench-
mark datasets and the experimental results show that it out-
performs the other competitors.

Although noticeable results have shown the effectiveness
of the proposed method, some limitations still exist. For ex-
ample, the average accuracy for small semantic object is low.
How to increase the accuracy of small target is still a chal-
lenging problem.
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